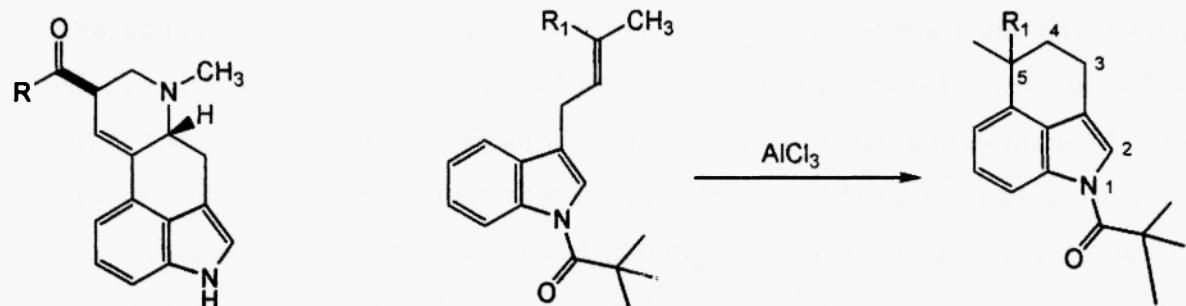


BIOMIMETIC INTRAMOLECULAR CYCLIZATION OF 1-TRIMETHYLACETYL
-3- (3-METHANESULFONOXYBUTYL) INDOLE DERIVATIVE
AT THE 4-POSITION OF INDOLE NUCLEUS

Nobumitsu Tajima, Yoshihiko Shinoda and Shin-ichi Nakatsuka*


United Graduate School of Agricultural Science, Gifu University,

1-1 Yanagido, Gifu 501-1193, Japan

Abstract: 1-Trimethylacetyl indole derivative **4c** was regioselectively cyclized in 54% yield at the 4-position of indole nucleus to afford dihydrobenz[c,d]indole **3b**.

In the biosynthesis of ergot alkaloids **1**, a prenyl group is first introduced at 4-position of L-tryptophan (1). However, introduction of such substituent on the benzen ring part of indole nucleus is one of the most difficult problems in the chemical synthesis, because of its higher reactivity of the pyrrole ring part than the benzen ring part.

Schem1

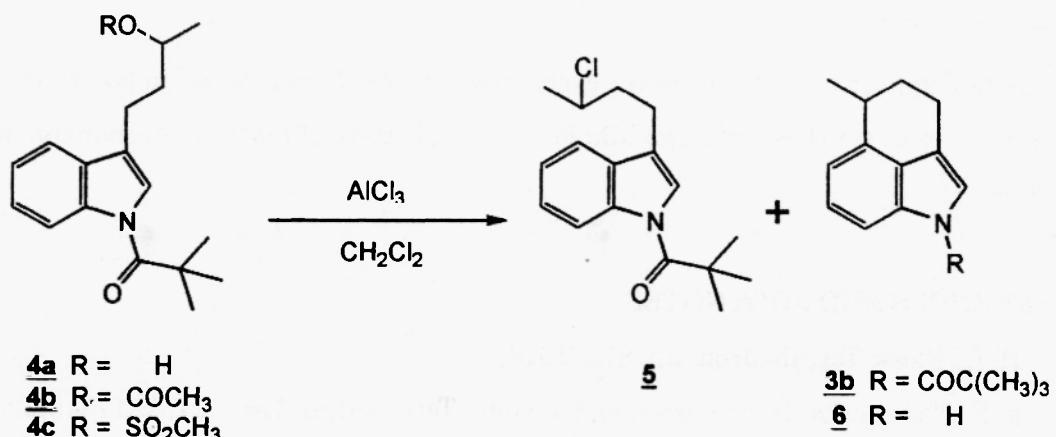
Ergot alkaloids (**1**)

2a $\text{R}_1 = \text{CH}_3$

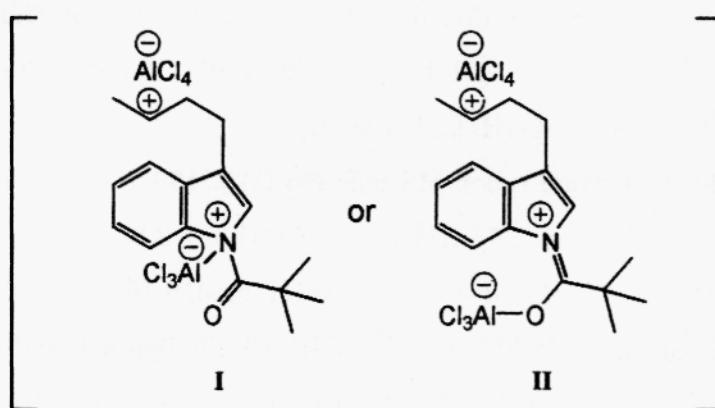
2b $\text{R}_1 = \text{H}$

3a $\text{R}_1 = \text{CH}_3$ (70%)

3b $\text{R}_1 = \text{H}$ (15%)


In our studies on synthesis of indole alkaloids, we have succeeded inter-, intramolecular cyclizations and direct introduction of a substituent at benzen ring part of simple indole derivatives (2). Now, we report much more efficient method of intramolecular cyclization for the synthesis of ergot alkaloids.

In the previous paper (2j), we reported novel AlCl_3 -catalyzed cyclization of the tri-substituted olefin **2a** to afford 5,5-dimethyl-dihydrobenz[c,d]indole derivative **3a** in 70% yield. But cyclization yield of di-substituted **2b** was only 15% to afford 5-methyl derivative **3b** which contains the same carbon substituents with ergot alkaloids (Scheme 1). Here we report an efficient cyclization starting from methanesulfonate **4c** (3) toward our desired **3b** (4).


An alcohol **4a** was acetylated with $\text{Ac}_2\text{O}/\text{Pyr}$. to afford the corresponding acetate **4b** in quantitative yield. Although **4a** or **4b** was treated with AlCl_3 in CH_2Cl_2 etc. in various conditions, each maximum yield of **3b** was less than 30%. Therefore an methanesulfonate **4c** was synthesized from **4a** with MsCl/Pyr . in quantitative yield. AlCl_3 treatment of **4c** in various reaction conditions were carried out and the results of typical case are shown in Table 1. When 2 equiv. AlCl_3 was used, no cyclization product **3b** could be observed in the reaction mixture and the corresponding chloride **5** was obtained in 86% yield (entry 1). Maximum yield of **3b**, 54% was obtained when large excess (19 equiv.) AlCl_3 was used in highly diluted CH_2Cl_2 solution at r.t. for 10 min (entry 4).

The cyclization of **4c** was carried out as follows: powdered AlCl_3 was added to a CH_2Cl_2 solution (104 mg **4c** in 40 ml CH_2Cl_2) at r.t. and stirred for 10 min. The reaction mixture was washed with sat. potassium sodium tartrate solution and extracted with CH_2Cl_2 (3 times). After evaporation of the combined and dried extract with Na_2SO_4 , the mixture was purified with PTLC (10% EtOAc in Hexane) to give cyclized product **3b** (41mg, 54%).

When the chloride **5** was treated with large excess AlCl_3 under the same condition with entry 4, **3b** was obtained in 55% yield. Therefore, cyclization of **4c** may proceed through the chloride **5**. No cyclization products at the 2-position of indole nucleus were observed in the reaction mixture. Reaction mechanism producing **3b** was realized that nucleophilic pyrrole part (1, 2 and 3-positions) of **4c** was deactivated by formation of AlCl_3 - complex such as I or II, and relatively electron rich 4-position was attacked by Friedel-Crafts type cationic site on the side chain at 3-position of indole nucleus to afford 5-methyl-3,4-dihydro(*1H*)benz[c,d]indole **3b**. Hydrolysis of **3b** with 1N- NaOH in MeOH afforded **6** (5) in

Table 1. AlCl₃ catalyzed cyclization of **4c** in various reaction conditions

entry	AlCl ₃ (eq.)	solvent (times)	condition	time (min.)	products (Yield)	
					5	3b
1	2	100	r.t.	30	86%	-
2	5	100	r.t.	40	-	26%
3	5	400	r.t.	5	75%	-
4	19	400	r.t	10	-	54%

quantitative yield.

Further application of our novel cyclization at the 4-position of indole nucleus to the biomimetic total synthesis of ergot alkaloids (1) and study of reaction mechanism are now in progress.

REFERENCES AND FOOTNOTES

- (1) H. G. Floss, *Tetrahedron*, **32**, 873 (1976).
- (2) a) S. Nakatsuka, H. Miyazaki and T. Goto, *Tetrahedron Lett.*, **21**, 2817 (1980).
b) S. Nakatsuka, H. Miyazaki and T. Goto, *Chem. Lett.*, 407 (1981).
c) S. Nakatsuka, K. Yamada and T. Goto, *Tetrahedron Lett.*, **27**, 4757 (1986).
d) S. Nakatsuka, O. Asano and T. Goto, *Heterocycles*, **24**, 2109 (1986).
e) S. Nakatsuka, O. Asano, K. Ueda and T. Goto, *Heterocycles*, **27**, 1471 (1987).
f) K. Teranishi, S. Hayashi, S. Nakatsuka and T. Goto, *Tetrahedron Lett.*, **35**, 8173 (1994).
g) K. Teranishi, S. Hayashi, S. Nakatsuka and T. Goto, *Synthesis*, 506 (1995).
h) S. Hirano, R. Akai, Y. Shinoda and S. Nakatsuka, *Heterocycles*, **41**, 255 (1995).
i) S. Nakatsuka, Dingyu Hu and M. Tanahashi, *Heterocyclic Communications*, **2**, 555 (1996).
j) S. Nakatsuka, T. Hayashi, S. Adachi, Y. Harada and N. Tajima, *Heterocyclic Commun.*, **3**, 47, (1997).
- (3) 4c; $^1\text{H-NMR}$ (CDCl_3) δ ppm 1.46 (3H, d, $J=6$ Hz), 1.52 (9H, s), 2.06 (2H, m), 2.86 (2H, m), 3.05 (3H, s), 4.91 (1H, m), 7.28 (1H, br.t, $J=8$ Hz), 7.36 (1H, br.t, $J=8$ Hz), 7.50 (1H, br.d, $J=8$ Hz), 7.66 (1H, br.s), 8.53 (1H, br.d, $J=8$ Hz).
- (4) 3b; m.p. 144~145°C (sealed tube); MS m/z 255 (M^+), 156. $^1\text{H-NMR}$ (CDCl_3) δ ppm 1.38 (3H, d, $J=7$ Hz), 1.51 (9H, s), 1.76 (1H, m), 2.08 (1H, m), 2.82 (2H, m), 3.07 (1H, m), 7.10 (1H, br.d, $J=8$ Hz), 7.29 (1H, t, $J=8$ Hz), 7.36 (1H, br.s), 8.18 (1H, br.d, $J=8$ Hz).
- (5) 6; m.p. 63-64°C; MS m/z 171(M^+), 156. $^1\text{H-NMR}$ (CDCl_3) δ ppm 1.40 (3H, d, $J=7$ Hz), 1.78 (1H, m), 2.10 (1H, m), 2.88 (2H, m), 3.10 (1H, m), 6.85 (1H, m), 6.92 (1H, m), 7.14-7.17 (2H, m), 7.83 (1H, br.s).

Received on October 30, 1999